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Revisiting Defense Mechanisms in Federated Learning: Effective and Efficient
Backdoor Attack via Trigger Pre-optimization

Abstract
Backdoor attacks and defenses in federated
learning (FL) have attracted significant atten-
tion due to their implications for model security.
Through reproducibility testing of current attacks
and defenses, we found that existing attack meth-
ods often fail to deliver consistently high success
rates. To address this gap, we analyzed the ef-
fects of poisoning rates, joint data-label distribu-
tions, and client-label distributions on defenses.
We theoretically and experimentally investigate
the relationship between data distribution differ-
ences and model update discrepancies and pro-
vide an upper bound for attack effectiveness.

Building on these insights, we propose PREFed,
a novel backdoor attack method that PRE-
optimizes and REfines triggers to enhance effi-
ciency and effectiveness. PREFed leverages mid-
training global models to simulate both normal
and malicious updates, iteratively refining trig-
gers by maximizing their similarity to optimize
their initial state. This approach ensures higher
attack efficiency early in training, while continu-
ous optimization further improves attack perfor-
mance in later stages.

We evaluated PREFed against six advanced de-
fense methods and compared it with five at-
tack methods using three benchmark datasets.
Experimental results demonstrate that PREFed
achieves superior attack success rates while mini-
mizing its impact on main task performance. No-
tably, PREFed achieves over 80% attack accu-
racy within just five training rounds.

1. Introduction
The rise of deep learning has underscored the critical role
of data in developing robust models (Xu et al., 2019). Fed-
erated learning (FL) has emerged as a privacy-preserving
paradigm that enables multiple participants to collabora-
tively train high-quality models without sharing raw data
(Konečnỳ et al., 2016; Aono et al., 2017). This distributed
training approach has been widely adopted across domains
(Miao et al., 2023; Islam et al., 2022). However, FL is vul-
nerable to security threats, particularly stealthy and highly

damaging targeted backdoor attacks (Nguyen et al., 2019;
2020). In such attacks, malicious participants inject back-
doors into the global model by combining local backdoor
training with central aggregation. While these attacks leave
the model’s primary task performance unaffected, inputs
containing specific triggers yield attacker-defined outputs.

Current defenses primarily rely on detecting and filtering
anomalous models or updates during aggregation (Nguyen
et al.; Rieger et al.). To bypass these defenses, attackers
have developed adaptive strategies, such as increasing the
influence of malicious updates during aggregation (Li et al.,
2023; Zhang et al., 2024). However, as shown in our re-
peated experiments (see Table 7), existing adaptive attack
methods struggle to maintain high success rates and require
frequent adjustments based on feedback from subsequent
global model updates. In addition, these dynamic adjust-
ments significantly reduce attack efficiency.

Motivated by these limitations, we revisited existing de-
fense mechanisms, particularly anomaly detection algo-
rithms, to understand their vulnerabilities. Our analysis re-
vealed that differences in dataset distribution are reflected
in model updates, making detection more likely under cer-
tain conditions. Specifically, when the poisoning rate is
high (e.g., 1), backdoor updates are more distinguishable,
while lower poisoning rates (e.g., 0) render backdoor up-
dates nearly indistinguishable from normal ones. Through
theoretical 3 and experimental analysis 5, we established a
relationship between data-label distribution differences and
model update patterns. This insight led us to develop a
novel backdoor attack approach that optimizes trigger de-
sign before deployment.

We propose PREFed, a backdoor attack method that incor-
porates Pre-optimizing and Refining trigger 1. By simulat-
ing both backdoor and normal training processes before the
attack phase, PREFed refines the trigger to maximize the
similarity of both model updates, enhancing attack stealth
and efficiency. Furthermore, PREFed continuously refines
the trigger during the attack phase, further improving effec-
tiveness and adaptability.

Our contributions are summarized as follows:

1) We establish a connection between dataset distribution
and model updates through theoretical and experimental

1we also introduce PreFed with only trigger Pre-optimization.
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analysis. We provide boundary conditions for backdoor
attacks under detection mechanisms, offering strong ev-
idence for PREFed’s feasibility.

2) We present PREFed, the first backdoor attack method to
incorporate preemptive trigger optimization. PREFed
significantly improves attack efficiency through opti-
mized triggers and further enhances effectiveness via
continuous fine-tuning during backdoor implantation.

3) PREFed is evaluated on three benchmark datasets, six
state-of-the-art defense mechanisms, and three com-
monly used attack strategies. Our method achieves su-
perior attack performance, with backdoor accuracy ex-
ceeding 90% while causing minimal degradation (e.g., a
maximum primary task reduction of 5.58% on CIFAR-
10). Additionally, PREFed demonstrates high effi-
ciency, achieving over 80% backdoor accuracy within
five training rounds and reducing per-client per-round
time costs by 82.9% compared to 3DFed.

2. Related Work
2.1. FL Backdoor Attack

Backdoor attacks in federated learning (FL) can be broadly
categorized into fixed trigger attacks and trigger optimiza-
tion attacks.

Fixed trigger attacks use predefined trigger patterns that
remain constant visually or in data. Xie et al. (2019) and
Gong et al. (2022) exploit FL’s distributed nature to de-
sign collaborative backdoor attacks. To counter evolving
defense mechanisms, Li et al. (2023) introduced 3DFed,
an advanced attack method integrating adaptive modules to
bypass multiple defenses. Similarly, Zhuang et al. (2023)
improve backdoor implantation by targeting critical model
layers, replacing benign updates with compromised ones,
thereby evading detection.

Trigger optimization attacks are often more effective, as
optimized triggers can more reliably activate backdoors
(Pang et al., 2020). A notable example, A3FL (Zhang et al.,
2024), predicts dynamic changes in the global model, al-
lowing triggers to adapt and extend the lifespan of back-
doors.

However, fixed and optimized trigger attacks depend on
feedback from global model updates or estimates of other
external information. This reliance on complex calcula-
tions reduces attack efficiency and, in some cases, limits
their overall effectiveness.

2.2. FL Backdoor Defense

Defense mechanisms in FL against backdoor attacks gener-
ally fall into three categories: filtering strategies, mitigation

strategies, and hybrid approaches.

Filtering strategies aim to identify and exclude inconsis-
tent updates based on anomaly detection. Foolsgold (Fung
et al., 2020) uses historical update information to identify
malicious contributions. To address the high-dimensional
nature of large models, RFLBAT (Wang et al., 2022) em-
ploys Principal Component Analysis (PCA) (Maćkiewicz
& Ratajczak, 1993) for dimensionality reduction. FreqFed
(Fereidooni et al.) further advances this approach by apply-
ing Discrete Cosine Transform (DCT) for spectral analysis,
focusing on low-frequency components to improve cluster-
ing accuracy.

Mitigation strategies, inspired by differential privacy
(McMahan et al., 2017b), aim to disrupt backdoor effec-
tiveness by modifying uploaded model updates. This in-
cludes limiting update weights and adding noise (Bag-
dasaryan et al., 2020; Naseri et al., 2020). While effec-
tive in mitigating backdoor attacks and enhancing client
privacy, these methods can introduce efficiency challenges
and degrade overall model performance.

Hybrid approaches combine elements of filtering and mit-
igation for more robust defense. For example, Deepsight
(Rieger et al.) and FLAME (Nguyen et al.) integrate
norm clipping, noise addition, and HDBSCAN clustering
(Campello et al., 2013) to counter backdoor attacks. These
methods are compatible with common aggregation rules
like FedAvg and FedSGD (McMahan et al., 2017a), ensur-
ing adaptability to various FL frameworks.

3. Design of PREFed
In this section, we first conduct an in-depth analysis of the
mechanism of the existing detection algorithm, with a par-
ticular focus on capturing the difference between model up-
dates (Rieger et al.; Wang et al., 2022; Fereidooni et al.).
We establish the relationship between model update dis-
crepancies and dataset distribution differences and demon-
strate that even models that have not fully converged can
capture these differences.

Additionally, we perform a theoretical analysis to explore
the attack boundary under the detection algorithm and
demonstrate the relationship between attack feasibility and
the dataset distribution difference (which has also been ver-
ified through experiments in Section 5). Based on these
findings, we propose the PREFed, which enhances attack
effectiveness by optimizing triggers in advance.

3.1. Discrepancy Analysis of Client Updates

At first, differences in dataset distribution primarily stem
from two key aspects:

2
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• The Data-Label Joint Distribution. In federated
learning, variations in the joint distribution of labels
and data among client datasets refer to differences in
the joint probability distribution of data features and
their corresponding labels across clients. Let P (X,Y )
represent the joint distribution of the data feature X
and label Y . For two clients i and j, a difference in
the joint distribution exists if their respective distribu-
tions, Pi(X,Y ) and Pj(X,Y ), are not identical.

• Label Distribution Difference. Differences in label
distribution refer to variations in the probability dis-
tribution of labels across clients. Let P (Y ) denote the
distribution of label Y . For two clients i and j, a dif-
ference in label distribution exists if their respective
distributions, Pi(Y ) and Pj(Y ), are not identical.

The difference in dataset distribution is propagated to back-
door updates through model training and can subsequently
be captured by detection algorithms (Fereidooni et al.;
Wang et al., 2022; Rieger et al.). This intuition is supported
by the following observations (discussed in Section 5.2):

1. When the data poisoning rate is zero, the update is
indistinguishable from the clean dataset.

2. As the poisoning rate increases, the difference be-
comes larger and is easier to be detected.

3. Moreover, the detection mechanism can capture the
difference between model updates in the middle stage
of training.

Theorem 1. In federated learning, an unconverged
model’s parameter updates can reflect the differences in
dataset distributions. Specifically, let D(D1,D2) denote
a measure of difference between the dataset distributions
D1 and D2. As D(D1,D2) → 0, let f(θ1,t+1, θ2,t+1)
represent the difference in model updates for datasets
D1 and D2 at iteration t + 1, respectively. Then
f(θ1,t+1, θ2,t+1)→ 0, indicating that as the dataset distri-
butions converge, the model updates also become increas-
ingly similar.

Remark 1. We use the cosine similarity metrics to quan-
tify the difference between the normal update and the back-
door update. By calculating the cosine similarity of the two
model update vectors, we can measure both the update dif-
ference and the dataset distribution difference.

3.2. Attack Boundary Analysis

Detection-based defense mechanisms can identify differ-
ences in model updates. However, the distributional differ-
ences between client datasets inherently create a potential

vulnerability that can be exploited2. The following pro-
vides a theoretical analysis of the attack boundary within
defense mechanisms that employ detection algorithms.

The influence of the joint distribution of data and labels is
visualized and analyzed in Section 5.1. When the data have
similar representations but different labels, it leads to sig-
nificantly different model updates. In this context, we as-
sume that the joint distribution of data and labels is consis-
tent and focus on the scenario where only label distribution
differences exist. We then analyze the attack boundary for
attackers under defense mechanisms that rely on detection
algorithms.

Assumption 1. Consider a federated learning setup with
n for a classification task, with clients denoted as C =
{c1, c2, ..., cn}. For all categories, sampling is performed
according to the Dirichlet distribution with a parameter
vector α = (α1, α2, · · · , αk), where k is the number of
categories and each category has the same number of sam-
ples. This allows us to simulate label distribution differ-
ences among clients using the Dirichlet distribution, a com-
mon approach in federated learning simulations.

Definition 1. For each client ci ∈ C, a probability vector

pi = (pi1, pi2, · · · , piK)T

can represent the dataset distribution Di of client ci, which
is sampled from the Dirichlet distribution with parameters
α. The covariance matrix of the dataset distribution of all
clients is defined as ΣN×N :

Σii =

k∑
l=1

Var(pil) =
k∑

l=1

αl(
∑k

l=1 αl − αl)

(
∑k

l=1 αl)2(
∑k

l=1 αl + 1)
,

(1)

Cov(pil, pjm) = − αlαm

(
∑k

l=1 αl)2(
∑k

l=1 αl + 1)
, (2)

where Cov(pil, pjm) is the covariance between the l-th cat-
egory of client ci and the m-th category of client cj . So that
the elements of the covariance matrix

Σij =

k∑
l=1

k∑
m=1

Cov(pil, pjm) (3)

can be considered the measure of the difference between
the dataset distributions D(Di,Dj) of clients ci and cj .

Remark 2. From Proposition 1, there is the same trend
in the dataset distribution difference and the model update
difference. Consequently, the boundary in dataset distri-
bution differences can be interpreted as the boundary in
model update differences.

2This becomes more evident in settings with more pronounced
non-IID (Independent and Identically Distributed) data.
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Theorem 2. Under the defense mechanism with a detec-
tion algorithm, there exists a space of differences between
client dataset distributions, where the poisoned dataset can
be concealed, allowing the attacker to evade detection. The
upper bound and the lower bound of this difference space
are defined as follows:

0 ≤ D(Di,Dj) ≤ N

k∑
l=1

k∑
m=1

αlαm

(
∑k

l=1 αl)2(
∑k

l=1 αl + 1)
.

(4)
These bounds are determined by the maximum and mini-
mum eigenvalues of the covariance matrix ΣN×N (The de-
tails of proof can be seen in Appendix A ).

Remark 3. When αk = α for all k, the attack interval is
given by:

0 ≤ D(Di,Dj) ≤
N

Kα+ 1
. (5)

This indicates that when the data distribution deviates from
IID, it becomes easier for attackers to execute successful
attacks (related experiments are presented in Section 5.3).

3.3. Methodology

We discard the traditional method of increasing the weight
of malicious updates during aggregation, such as increas-
ing the number of local training epochs, raising the local
training learning rate, and using a scaling factor to adjust
the value of malicious updates. Instead, we maintain the
same training scheduler and hyperparameter setting as in
normal training and do not scale the uploaded update. Con-
sequently, our attack is confronted with the following chal-
lenges:

1. Evading diverse detection algorithms (resisting fil-
tering mechanisms): The attacker is unaware of the
specific detection algorithm employed by the server.
Only when the backdoor update bypasses the detec-
tion mechanism and participates in aggregation can
there be a chance to implant a backdoor in the global
model.

2. Enhancing the robustness of the backdoor (resist-
ing mitigation mechanisms): Due to the existence of
norm-clip, it is impossible to increase the weight of
backdoor updates during aggregation. Moreover, the
perturbation caused by adding noise can also affect the
expression of the backdoor. Therefore, the implanted
backdoor needs to be sufficiently robust.

From the previous analysis, Therorem 2 offers proof re-
garding the theoretical boundary for the dataset distribu-
tion in backdoor attacks. In practical applications, given
the continuous high-dimensional features of images and the

one-hot discrete features of labels, it is challenging to di-
rectly calculate and measure the joint distribution. Accord-
ing to Theorem 1, we can optimize the trigger to ensure that
the poisoned dataset remains within this boundary by mini-
mizing the disparity between normal updates and backdoor
updates. Moreover, Theorem 1 indicates that even mod-
els not fully converged can detect the difference in dataset
distributions.

Therefore, we propose PREFed which utilizes a global
model that has not converged in the middle of training to
optimize the trigger in advance. For challenge 1, by sim-
ulating normal training and backdoors to obtain their re-
spective update parameters θc and θb, we will maximize
their similarity as one goal to optimize the trigger, thereby
reducing the difference between the poisoned dataset and
the original clean dataset, the loss function is defined as
follows: LCS = 1 − CS(θc, θb), here we use cosine sim-
ilarity as the similarity measure. In addition, for challenge
2, inspired by Pang et al. (2020), we will optimize a generic
trigger by adversarial training as one goal to enhance the
robustness of backdoor attacks, the loss function is defined
as follows: LCE(ypred, ytarget), where we use cross entropy
loss function. So, the overall optimization goal is defined
as follows:

minLt = α ∗ LCE(ypred, ytarget) + (1− α)LCS . (6)

The overview of PREFed is shown in Figure 1, including
the following three phases: The details of PREFed are as
follows:

1. Model Warm-up: In the early stage of model train-
ing, the attacker normally participates in the training
process, which prompts the global model to contact
the dataset fully. Implementing backdoor attacks at
this stage will not only have an adverse impact on the
learning of the main task but also interfere with the
implantation of the backdoor due to the large varia-
tion of global model parameters, thereby reducing the
attack’s efficiency.

2. Trigger Initialization: In the middle stage of model
training, the model has fully contacted the dataset and
can capture the difference in dataset distributions. At
this time, the attacker uses the backup global model
of an arbitrary round to simulate normal training and
backdoor training respectively, and initializes the trig-
ger as shown in Equation 6 to improve the efficiency
of backdoor attacks.

3. Malicious Updates Uploading and Trigger Refine-
ment: In the later model training stage, the attacker
began to manipulate the client to launch backdoor at-
tacks. At the same time, to adapt to the dynamic
changes of the global model, the attacker continued to
adjust the trigger to further improve the attack effect.

4
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Figure 1: The overview of PREFed. The method includes three phases: model warm-up, trigger initialization, and ma-
licious updates uploading and trigger refinement. We also introduce the PreFed, which only implements the malicious
updates uploading without trigger refinement.

The detail of the PREFed algorithm is shown in Algo-
rithm 1 in the Appendix. In addition, we also introduce
the PreFed method, which only implements the backdoor
attack in the later stage of model training without trigger
refinement. Later experiments will show it also improves
the attack success rate.

4. Experiments
In this section, we conduct experiments under six ad-
vanced existing defense mechanisms (RFLBAT, Fools-
Gold, FLDetector, DeepSight, FLAME, FreqFed) to high-
light PREFed’s outstanding effectiveness and efficiency
on three benchmark datasets (Cifar10, Cifar100, and tiny-
Imagenet (Krizhevsky et al., 2009; Le & Yang, 2015)). In
addition, we use the backdoor accuracy (BA) and the at-
tach success rate (ASR) to measure the performance of the
backdoor attack, and the main task accuracy (MA) to mea-
sure the performance of the main task 3.

Following by Li et al. (2023), we kept the poisoning rate
at 0.3 and the scaling factor 3, and set the concentration
parameter of Dirichlet distribution to 0.9 to simulate the
non-IID data distribution across client sides in real-world
scenarios (Hsu et al., 2019; Sattler et al., 2019). The rate
of compromised clients was set to 0.2, and the number of
clients was set to 100.

3The code is developed based on Li et al. (2023). It corrects
the errors in the DeepSight module and adds the implementation
of the DBA attack algorithm and the FreqFed defense algorithm.

Table 1: Experimental statistics on the number of success-
ful attack trials under different defense mechanisms. Each
experiment consists of 10 trials, with an attack considered
successful if the backdoor accuracy exceeds 50% in the fi-
nal testing round.

F

Defense\Attack 3DFed DBA ModelReplace PreFed PREFed

Deepsight 8 10 6 9 9
FLAME 2 0 0 10 10

FLDetector 9 8 9 9 10
Foolsgold 1 10 9 7 10
FreqFed 1 10 6 10 10
RFLBAT 2 0 0 7 7
FedAvg 8 9 9 10 10

4.1. Experimental Results

4.1.1. ASR OF VARIOUS ATTACKS

On the Cifar-10 dataset, we performed 10 arbitrary experi-
ments under six existing defense methods 4. Table 1 shows
that our attack method has generally improved the attack
success rate compared to previous methods, further refine-
ment of the trigger can significantly improve the attack suc-
cess rate by comparing PreFed with PREFed.

It is worth noting that even under the FedAvg aggregation
rule without a defense mechanism, the attack method based
on the scaled update value cannot achieve a 100% success
rate. This is because while scaling for model updates can

4The final result can be seen in Table 7 for details in the ap-
pendix.

5
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Table 2: The performance of different attack methods (ModelReplace (MR), Distributed Backdoor Attack (DBA), 3DFed,
and PREFed) under various defense methods (RFLBAT, FoolsGold, FLDetector, DeepSight, FreqFed, and FLAME). The
red data indicate the best effect and the underlined data indicate the second-best effect.

Defense RFLBAT FoolsGold FLDetector DeepSight FreqFed FLAME Avg.

Dataset Attack\Metric(%) BA MA BA MA BA MA BA MA BA MA BA MA BA MA

MR 10.83 79.28 98.65 71.28 97.31 74.28 99.25 65.96 98.47 60.17 10.5 73.02 69.17 70.67(-12.98%)
DBA 45.54 79.10 99.80 59.74 99.94 73.96 98.45 77.11 99.99 48.88 11.45 72.80 75.86 68.60(-15.5%)

Cifar-10 3DFed 65.84 79.10 80.65 76.41 84.01 25.85 88.64 78.80 62.57 74.10 86.28 69.29 78.00 67.26(-17.18%)
PREFed 97.4 79.12 96.97 76.25 99.12 80.53 99.08 79.33 97.6 76.18 99.74 68.62 98.32 76.67(-5.58%)

w/o 10.44 81.54 10.26 80.82 10.33 81.68 10.22 81.64 10.53 80.49 10.50 81.06 10.38 81.21

MR 61.43 24.26 4.53 51.87 99.24 30.47 1.00 52.03 99.90 49.13 0.96 51.20 44.51 43.16(-17.08%)
DBA 0.76 51.54 0.85 51.90 16.46 25.46 0.73 52.11 37.19 27.40 0.78 51.12 9.46 43.26(-16.90%)

Cifar-100 3DFed 4.96 49.51 92.47 51.68 90.61 50.88 0.88 51.91 5.48 51.81 1.22 51.63 32.60 51.24(-1.57%)
PREFed 74.34 50.55 99.05 51.60 97.76 51.70 93.29 52.00 89.04 51.46 99.48 50.42 92.16 51.29(-1.47%)

w/o 1.00 52.44 0.82 51.93 0.94 52.07 0.92 52.22 0.72 52.23 0.80 51.42 0.87 52.05

MR 7.77 68.12 0.52 70.96 0.53 70.75 0.54 71.14 0.67 70.85 0.50 70.90 1.76 70.45(-1.00%)
DBA 29.22 59.09 0.52 71.13 100.00 69.70 0.55 71.24 0.62 70.97 0.54 70.83 21.91 68.83(-3.29%)

3DFed 8.50 70.75 0.52 70.94 97.62 70.64 0.51 70.95 0.63 70.82 0.53 70.89 18.05 70.83(-0.47%)
PREFed 99.99 70.92 99.99 71.14 99.99 70.75 99.46 71.46 100.00 70.74 99.99 70.83 99.90 70.97(-0.27%)

Tiny
-

Imagenet
w/o 0.54 71.22 0.53 71.21 0.54 71.25 0.54 71.21 0.52 71.05 0.54 71.06 0.54 71.17

greatly improve attack efficiency, it can lead to numerical
stability issues. Specifically, over-scaling can cause numer-
ical overflows, causing the model’s computational results to
become unstable during inference. F

4.1.2. COMPARISON WITH BASELINE

From Table 2, it can be noticed that our method achieves
more than 90% attack accuracy under different defense
mechanisms. Even if we cannot achieve the highest BA in
all scenarios, the overall attack effect is the best. In addi-
tion, our method also has the smallest loss on the main task
(5.58% reduction on Cifar-10, 1.47% reduction on Cifar-
100, and 0.27% reduction on Tiny-Imagenet).

It is worth noting that in some cases, BA cannot be sub-
optimal simultaneously as MA in other attack methods.
This is because scaling-based backdoor attacks can com-
promise the performance of the main task during training.
More seriously, as can be seen from Figure 9, the training
method based on scaling updates becomes unstable. If the
scaling factor selected is too large, the model update may
lead to numerical overflow.

In addition, we also reproduced A3FL and Backdoor-
Critical layer attacks (can been in the appendix C.2), which
are the advanced trigger-optimization attacks and adaptive
attacks respectively. From Figure 6 and 8, PREFed is supe-
rior in terms of attack effectiveness and efficiency.

4.1.3. ATTACK EFFICIENCY

Our experiments evaluated attack efficiency by measuring
both time cost and the number of attack rounds. The im-
provement of attack efficiency has more practical impacts:

Table 3: Comparison of time overhead per round for differ-
ent attacks under FLAME framework on Cifar-10 dataset.

Attack DBA ModelReplace 3DFed PREFed

Time(s) 5.35 7.07 26.75 4.53

In the training process, even if the training equipment is of-
fline or fails to catch up with the timestamp due to some
reasons, the attack task can be completed in a shorter time,
thereby reducing the loss caused by attack interruption due
to unexpected situations and improving the success rate and
stability of attacks.

Figure 9 shows the performance of different attack meth-
ods under various defense mechanisms on the Cifar-10
dataset, which shows that the attack accuracy of PREFed
rose to over 80% within 5 rounds. In addition, Table 3
shows the per-round time consumed attack on the Cifar-10
dataset. The result shows that PREFed outperforms other
attack methods in terms of time cost, an approximately
14.56% improvement over DBA, about 36.03% over Mod-
elReplace, and roughly 82.94% over 3DFed.

Overall, PREFed not only proves to be enough effective in
backdoor attacks but also displays significant advantages in
terms of attack efficiency.

5. Further Analysis
In this section, we conduct a detailed analysis to unveil the
relationship between dataset distribution differences and
model update differences, further deepen our understand-
ing of backdoor attacks.

6
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Table 4: The performance of PREFed with different poison rates. The red data represents the bad cases where the attack
was unsuccessful.

Poison Rate 0.1 0.2 0.3 0.4 0.5 0.8 1.0

Defense\Accuracy(%) MA BA MA BA MA BA MA BA MA BA MA BA MA BA

Deepsight 81.13 91.8 81.35 95.77 80.46 98.92 81.04 98.22 80.95 99.1 81.34 13.4 81.4 7.71
FLAME 78.02 98.02 80.35 98.04 80.92 99.51 80.0 98.81 78.78 99.53 81.03 17.62 81.39 10.78

FLDetector 81.34 94.55 80.48 98.11 81.03 99.34 80.19 97.78 79.48 98.36 81.45 85.09 81.33 12.86
Foolsgold 80.42 92.31 80.42 97.98 80.93 99.34 80.5 98.75 80.55 99.19 81.14 14.06 80.86 7.17
FreqFed 80.13 95.11 80.53 97.8 81.35 98.91 80.17 99.26 79.26 99.76 80.51 97.24 80.87 11.08
RFLBAT 81.12 94.05 80.77 98.72 80.93 98.39 81.24 62.74 80.75 99.0 80.55 15.1 81.22 7.64

Avg. 80.36 94.31 80.65 97.74 80.94 99.07 80.52 92.59 79.96 99.16 81.00 40.42 81.18 9.54

5.1. Visualization and Analysis

We analyze the impact of data-label joint distributions by
visualizing data representations and model updates.

Figures 2 and 3 respectively represent the visualization of
3DFed and PREFED on Cifar-10 under the FLAME de-
fense. This includes the t-SNE result of clean and poisoned
datasets, as well as the PCA visualization graphs of model
updates during normal and backdoor training. 3DFed uses
a patch-size image as the trigger, while PREFED uses the
global-size trigger and constructs poisoned data in blend
form. In order to better distinguish the target label from the
original label, we set the target label to 10 (a new label).

The observed results show that when 3DFed uses a patch as
the trigger to poison the dataset, the representation of data
is highly similar to the normal dataset. This is because the
patch does not significantly affect the overall data charac-
teristics. However, due to the label flip (from the source
label to the target label), significant changes have occurred
in model updates. Furthermore, to establish the association
between the target label and the trigger, the malicious up-
dates of the damaged client become more concentrated, as
shown in Figure 2d.

In contrast, the data poisoned by PREFED is clearly dis-
tinguished from other clean data, but its malicious model
updates are closer to normal updates and more concealed.
As shown in Figure 3d, malicious updates can be better
hidden among other model updates.

Takeaway 1: Attackers seeking to enhance the
concealment of backdoor attacks should focus on
the consistency of data-label joint distributions in-
stead of data features.

5.2. Poison Rate

We tested the performance of our method under different
poisoning rates, still using attack accuracy over 50% as the
criterion for attack success.

Tabel 4 showed that with the increase in poisoning rate
(from 0.1 to 0.5), the attack accuracy overall showed an up-
ward trend. However, at the poisoning rate of 0.4, the over-
all attack accuracy decreased slightly due to the accuracy
of only 62.74% under the RFLBAT defense mechanism.
This shows that under the premise of breaking through the
defense, increasing the poisoning rate usually enhances the
attack effect. However, when the poisoning rate continues
to increase to a higher level, the attack effect decreases.

At the poisoning rate of 0.8 and 1.0, the average attack ac-
curacy decreases to 40.42% and 9.54%, respectively. This
phenomenon shows that when the poisoning rate is too
high, the distribution difference of the dataset becomes too
obvious, resulting in the malicious model updates being
easily recognized by the detection mechanism.

Takeaway 2: PREFed achieves high attack accu-
racy with a lower poisoning rate. However, exces-
sively high poisoning rates can reduce the attack’s
success, highlighting that dataset distribution dif-
ferences are indeed reflected in model updates and
can be detected by defense algorithms.

5.3. Non-IID Data

We delve into the impact of non-IID data on the PREFed at-
tack strategy. The hyperparameter α controls Dirichlet dis-
tribution, when α → ∞, the data distribution of all clients
is identical to the prior distribution and is completely in line
with IID.

According to Table 5, when the data distribution is closer
to being non-IID (α < 1), we can observe that PREFed
demonstrates exceptional stability, maintaining a backdoor
accuracy rate above 90%. However, when the α < 0.5, the
accuracy of the primary task is affected to a certain extent,
with a decline ranging from 10% to 30%. It is noteworthy
that MA will also significantly decrease due to the non-IID
data even without attacking. For instance, at α = 0.1, the
main task accuracy drops by 48.27% compared to α = 0.9.
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(a) Clean data (b) Poisoned data

(c) Normal training (d) Backdoor training

Figure 2: 3DFed under FLAME on Cifar-10

(a) Clean data (b) Poisoned data

(c) Normal training (d) Backdoor training

Figure 3: PREFed under FLAME on Cifar-10

Figure 4: Visualization of data distribution and model updates in normal vs. backdoor training. This figure shows the data
distribution and model updates at two stages: before the attack begins and during the first round of the attack.

Table 5: The impact of non-IID data for PREFed under FLAME defense on the Cifar-10 dataset.

α 0.1 0.3 0.5 0.7 0.9 10 20 50 100

Attack\Accuracy(%) MA BA MA BA MA BA MA BA MA BA MA BA MA BA MA BA MA BA

PREFed 27.82 98.61 57.14 91.02 69.67 94.06 71.16 96.55 72.48 97.53 77.97 25.88 77.76 20.52 78.25 22.55 77.97 22.78
w/o 37.93 28 65.01 11.32 70.34 14.37 73.51 9.45 73.33 11.06 78.19 10.82 77.72 10.85 77.81 10.25 78.26 10.57

Compared to the impact of PREFed on the accuracy of the
primary task, the non-IID data distribution has a more pro-
nounced effect on the primary task. Moreover, when the
data distribution is closer to being IID (α ≥ 10), the be-
havior of attack was detected and the attack effect is poor
(the backdoor task accuracy is below 30%).

Takeaway 3: In practical scenarios, the non-IID
data provide a larger attackable interval for attack-
ers, which does not affect the attack effectiveness
of PREFed and has a greater impact on the perfor-
mance of the main task.

6. Limitaions and Future Work
Attacker Perspective: Our experiments focus primarily
on image classification tasks, as PREFed is not yet well-
suited for other domains. In fields like text and tabular data,
their discrete nature poses challenges for designing triggers
that are both effective and inconspicuous. Addressing these
limitations and adapting PREFed will be a key focus of fu-
ture research.

Defense Perspective. Although existing defense mecha-

nisms increase the difficulty of executing backdoor attacks,
they are not foolproof. Many require either a higher num-
ber of compromised clients or rely on elevated poisoning
rates to mitigate attacks. PREFed’s success with minimal
resources highlights the inadequacy of existing defenses
during training and the pressing need for more advanced.

7. Conclusion
In this paper, we revisited existing defense mechanisms
based on anomaly detection in model updates, and explored
the relationship between data distribution differences and
the resulting model update discrepancies, offering a the-
oretical basis to understand the vulnerabilities in current
defense strategies. Our analysis shows that larger gaps in
client dataset distributions create broader attackable inter-
vals, making it easier for attackers to implant backdoors.

Building on this understanding, we introduced PREFed, a
novel backdoor attack method that pre-optimizes the attack
trigger, significantly enhancing attack efficiency. Our ex-
perimental results demonstrate that it outperforms existing
advanced attack methods in terms of both effectiveness and
efficiency under current defenses.

8
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A. The Proof of Theorem
The following is the detailed proof of Theorem 1

Proof. Let the model be f(x; θ), where x is the input data
and θ represents the model parameters. For two different
datasets D1 and D2, the loss corresponding functions are
L1(θ) and L2(θ), respectively.

The update formula for the model parameters is θt+1 =
θt−α ∂L

∂θt
, where α is the learning rate. For dataset D1, the

parameter update is θ1,t+1 = θt − α∂L1

∂θt
; for dataset D2,

the parameter update is θ2,t+1 = θt−α∂L2

∂θt
.The difference

between the two updates is: 5

f(θ1,t+1, θ2,t+1) = |(θt − α
∂L2

∂θ
)− (θt − α

∂L1

∂θ
)|

= |α(∂L2

∂θ
− ∂L1

∂θ
)|. (7)

As the dataset distributions become more consistent, it can
be assumed that L1(θ) and L2(θ) approach each other, i.e.,
|L1(θ) − L2(θ)| → 0. The dataset distribution can be re-
flected in the model’s parameter updates, it follows that
∂L2

∂θ −
∂L1

∂θ → 0. Therefore, the difference between the
model updates, f(θ1,t+1, θ2,t+1), will also tend to 0.

The following is the complete proof for Theorem 1. We
use the Gershgorin circle theorem to approximate the max-
imum eigenvalue of ΣN×N which is the upper bound of the
attack interval.

Proof. From the Definition 1, the process of proving pro-
cess is as follows:

Step 1: Since Σ is a non-negative matrix, the minimal
eigenvalue of ΣN×N is close to zero. We can ap-
proximate the minimum eigenvalue as:

λmin(ΣN×N ) ≥ 0.

Step 2: The maximum eigenvalue of ΣN×N can be ap-
proximated by the Gershgorin circle theorem. The
theorem states that the eigenvalues of a matrix are
located in the union of the Gershgorin circles:

λ ∈
N⋃
i=1

z ∈ C : |z − Σii| ≤
N∑

j=1,j ̸=i

|Σij |

 ,

(8)
where each Gershgorin circle is centered at Σii

with radius
∑

j ̸=i |Σij |.

λmax(ΣN×N ) ≤ max
i

Σii +
∑
j ̸=i

|Σij |

 , (9)

Step 3: Since the absolute value of |Σij |:

|Σij | ≤
k∑

l=1

k∑
m=1

αlαm

(
∑k

l=1 αl)2(
∑k

l=1 αl + 1)
.

(10)
5Here we simplify the expression of the differences between

updates.
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the maximum eigenvalue can be approximated as:

λmax ≤ N

k∑
l=1

k∑
m=1

αlαm

(
∑k

l=1 αl)2(
∑k

l=1 αl + 1)
.

(11)

Consequently, the lower and upper bounds for the differ-
ences in client data distributions can be expressed as equa-
tion 4. Then the proposition is proved.

B. PREFed Algorithm
The following is the complete algorithm of PREFed. The
algorithm is designed to optimize the triggers in advance to
improve the attack efficiency.

Algorithm 1 PREFed on Client
Input: Model architecture G; Model parameters θr; Client

dataset Dc; Trigger from last round Tr−1

Output: Optimized triggers Tr+1; Poisoned model param-
eter updates Θr+1

Initialize Θ← ∅, T ← ∅ for Ai ∈ Attackers do
θ′ ← θr
θ∗ ← θ′

Dp ← Poison(Dc, T )
Initialize t← T
θc ← Training(G, θ′, Dc)
θ′p ← Training(G, θc, Dp)
topt ← TriggerOptimize(G, θ′p, θc, Dp, T )
Add (θ′p − θr) to Θr+1

Add topt to Tr+1

end

Function Training(G, θ,D):
for i ∈ E do

for (x, y) ∈ D do
ypred ← Gθ(x)
θ ← θ − η∇LCE(ypred, y)

end
end
return θ

Function TriggerOptimize(G, θp, θc, Dc, T):
for i ∈ E do

for ((xc, yc), (xp, yp)) ∈ (Dc, Dp) do
(ypred

c , ypred
p )← (Gθc(xc), Gθp(xp))

LCS = 1− CosineSimilarity(∆θc,∆θp)

L1 ← α · LCE(y
pred
p , yp) + (1− α) · LCS

T ← T −∇Ct

end
end
return topt

C. The Implementation of Experiments
Federated Learning Setup. The global model uses the
ResNet-18 architecture, with a pre-trained model for the
Tiny-Imagenet dataset task. To simulate non-IID data dis-
tribution in the real world, we use Dirichlet distribution,
setting the concentration parameter to 0.9 in the main ex-
periment (consistent with previous studies (Li et al., 2023)).
In subsequent sensitivity experiments, we analyze the im-
pact of data non-IID by adjusting this parameter. In each
communication round, each client trains the local model
for 2 epochs using the SGD optimizer. The entire global
training process lasts for 220 communication rounds.

Attacker Setup. Referring to the mainstream experimental
settings (Zhang et al., 2024; Li et al., 2023; Zhuang et al.,
2023), in the main experiment, we set 20% of the clients
to be controlled by attackers and set the poisoning rate of
each damaged client data set to 30%. Here, we use a global
trigger and carry a blend strategy with a parameter setting
of 0.1:

Blended Image = 0.1× Trigger + 0.9× Image,

which is a small value and does not affect the visual ap-
pearance of the images (Chen et al., 2017; Fu et al., 2023).

C.1. The Number of Initial Epochs

We investigate the impact of initial trigger optimization on
PREFed using the Cifar-10 dataset and the FLAME defense
mechanism. Our analysis highlights how pre-optimizing
the trigger can significantly enhance the efficiency of back-
door attacks.

Table 6 shows the effect of the number of compromised
clients on the performance of PREFed, based on experi-
ments conducted with the Cifar-10 dataset and the FLAME
method. In the experiment, a total of 100 clients partic-
ipated in the training. The results indicate that when the
number of compromised clients is small, the attack’s effec-
tiveness is limited. For example, when only one client is
compromised, BA is only 32.87%, and with two compro-
mised clients, BA further drops to 13.75%.

Further analysis reveals that when the number of com-
promised clients exceeds 8, or more than 8% of the to-
tal clients, PREFed’s effectiveness increases significantly,
achieving a success rate above 90%. This demonstrates that
PREFed can achieve high attack performance when a suf-
ficient proportion of clients are compromised, highlighting
the method’s reliance on the number of controlled clients
during execution.

C.2. A3FL and Backdoor-Critical Layer Attack

Figure 6 shows the performance of A3FL (Zhang et al.,
2024) under FLAME and FreqFed defense mechanism, and
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Figure 7 and Figure 8 show the performance of Backdoor-
Critical Layer attack (BC) (Zhuang et al., 2023) in different
parameter settings. From these figures, both attacks need
more attack rounds.

A3FL attack enhances effectiveness through carefully de-
signed triggers, focusing particularly on the dynamic
changes of the global model to strengthen the persistence
of backdoor attacks. The Backdoor-Critical Layer Attack
adopts a more analytical approach by assessing the con-
tribution of each layer in the backdoor model to its effect
and sorting them based on their influence. In this method,
specific layers of a well-trained benign model are replaced
with corresponding layers in the backdoor model, where
the rank n of replacement layers is a parameter that can be
dynamically adjusted as needed. These complex computa-
tions need more time to attack.

Through these experiments, we further confirm the out-
standing performance of PREFed in terms of attack effi-
ciency and effectiveness.

Figure 5: The impact of the number of initial epochs for
PREFed under FLAME on Cifar-10.

C.3. The Number of Compromised Clients

Table 6 shows the effect of the number of compromised
clients on the performance of PREFed, based on experi-
ments conducted with the Cifar-10 dataset and the FLAME
method. In the experiment, a total of 100 clients partic-
ipated in the training. The results indicate that when the
number of compromised clients is small, the attack’s effec-
tiveness is limited. For example, when only one client is
compromised, BA is only 32.87%, and with two compro-
mised clients, BA further drops to 13.75%.

Further analysis reveals that when the number of com-
promised clients exceeds 8, or more than 8% of the to-
tal clients, PREFed’s effectiveness increases significantly,
achieving a success rate above 90%. This demonstrates that
PREFed can achieve high attack performance when a suf-

ficient proportion of clients are compromised, highlighting
the method’s reliance on the number of controlled clients
during execution.

C.4. Compared with Baseline

The following figures 9, 10 and 11 represent the perfor-
mance of PREFed compared with other attacks under six
advanced defenses on Cifar10, Cifar100 and Tint-Imagenet
datasets. The attacker begins to upload malicious updates
at the start of the 201st round of training. PREFed uses the
global model of the 100th round to optimize the trigger in
advance.

C.5. The Results of Ten Experiments

Table 7 is the result of 10 experiments, which shows
the performance of 3DFed, DBA, ModelReplace (MR),
PreFed, and PREFed under different defense mechanisms
on the Cifar-10 dataset.

Figure 6: The backdoor accuracy of A3FL with FLAME
and FreqFed defense mechanism. The backdoor attack
starts from the 1900th round.

(a) FLAME (b) FreqFed

Figure 7: The performance of BC attack under FLAME
and FreqFed defenses on Cifar-10. The setting is aligned
with PREFed, and implementing the backdoor attack starts
from the 201st round and ends at the 200th round.
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Table 6: The impact of the numbers of compromised clients for PREFed under FLAME on Cifar-10.

Number 1 2 4 5 6 8 10

Defense\Accuracy(%) MA BA MA BA MA BA MA BA MA BA MA BA MA BA
FLAME 81.44 32.87 80.95 13.75 81.56 53.83 81.36 89.46 81.44 68.08 80.65 97.79 80.79 98.90

Figure 8: The performance of the Backdoor-Criticial layer attack on the Cifar-10 dataset as the number of rounds increases.
(a) Adversary attacks from round 0 and end at round 200 with FreqFed; (b) Adversary attacks from round 0 and end at
round 200 with FLAME; (c) Adversary attacks from round 180 and end at round 200 with FLAME.

(a) Deepsight (b) FLAME (c) FLDetector

(d) Foolsgold (e) FreqFed (f) RFLBAT

Figure 9: The performance of different attack methods under various defenses on Cifar-10.
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(a) Deepsight (b) FLAME (c) FLDetector

(d) Foolsgold (e) FreqFed (f) RFLBAT

Figure 10: The performance of different attack methods under various defenses on Cifar-100.

(a) Deepsight (b) FLAME (c) FLDetector

(d) Foolsgold (e) FreqFed (f) RFLBAT

Figure 11: The performance of different attack methods under various defenses on Tiny-Imagenet.
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Table 7: The results of 10 experiments of different attack methods under various defenses on Cifar-10.

1 2 3 4 5 6 7 8 9 10

Defense Attack MA BA MA BA MA BA MA BA MA BA MA BA MA BA MA BA MA BA MA BA

3DFed 78.26 64.91 78.66 73.21 78.46 80.94 78.07 55.10 78.12 67.97 78.80 88.64 79.83 20.75 79.43 64.79 79.71 75.07 79.75 31.71
DBA 79.23 89.29 74.67 94.39 77.11 98.45 79.49 52.59 68.04 93.41 76.24 96.93 79.01 65.68 69.07 92.87 75.78 96.41 76.94 86.08

Deesight MR 65.96 99.25 79.36 10.33 75.81 96.71 76.31 97.87 79.13 10.23 80.09 33.93 79.73 9.64 72.72 94.34 80.43 10.48 73.37 97.82
PreFed 79.32 92.91 79.97 88.63 79.47 91.93 79.58 89.89 79.02 23.86 79.47 91.91 78.84 77.91 79.60 92.65 79.91 90.11 79.35 78.16
PREFed 79.84 89.16 79.03 96.84 79.03 98.09 79.15 94.39 79.46 98.22 79.71 96.07 79.33 99.08 79.07 97.57 79.15 97.30 79.81 18.87

3DFed 68.65 9.25 70.30 47.01 72.13 10.45 69.29 86.28 71.35 10.56 73.17 84.94 71.32 11.04 71.71 10.92 71.64 10.57 71.00 10.91
DBA 72.64 8.90 71.79 10.23 72.01 10.75 72.72 10.69 72.80 11.45 74.03 10.08 72.10 11.45 73.04 10.77 73.17 9.46 72.32 9.39

FLAME MR 71.52 9.94 73.31 10.17 73.02 10.50 73.24 10.22 72.82 9.67 73.71 10.28 72.45 10.23 73.27 10.15 72.73 9.13 73.13 8.28
PreFed 71.26 82.64 71.62 94.33 70.96 90.82 70.47 95.17 69.92 94.25 71.16 94.44 70.59 93.84 72.45 79.96 72.04 82.15 69.73 84.99
PREFed 68.20 99.29 70.48 98.85 68.62 99.74 71.61 98.64 70.68 98.17 71.64 97.90 70.86 96.89 71.07 97.60 71.71 98.38 71.13 97.53

3DFed 72.24 58.09 78.88 64.43 25.85 84.01 79.53 80.18 78.80 70.89 34.79 66.90 73.62 77.45 77.91 67.40 28.49 38.22 72.61 76.53
DBA 31.74 74.59 80.47 10.37 73.21 97.11 73.96 99.94 69.29 99.87 70.81 92.43 72.51 8.22 75.56 99.51 71.89 97.81 58.31 79.46

FLDetector MR 62.08 87.44 80.76 31.49 73.43 96.36 74.07 96.77 74.28 97.31 75.25 96.58 61.72 92.67 72.79 97.05 74.80 90.82 65.01 87.49
PreFed 73.19 78.43 80.69 84.90 80.64 87.95 73.84 91.00 80.42 68.30 79.31 70.92 80.56 82.06 75.11 94.15 80.84 93.20 79.99 17.37
PREFed 74.10 93.78 81.31 95.80 81.10 97.25 80.55 97.98 80.53 99.12 80.61 98.75 74.86 94.88 80.83 96.60 80.21 98.22 74.29 96.14

3DFed 74.76 45.78 76.31 45.75 77.08 38.97 71.85 36.99 75.43 24.82 74.86 12.41 72.27 17.01 76.41 80.65 74.24 42.66 75.93 48.34
DBA 59.74 99.80 73.23 96.60 70.81 87.56 70.49 96.82 62.91 99.19 69.12 91.04 70.40 97.94 74.88 95.09 74.70 86.98 74.43 97.08

Foolsgold MR 72.33 61.31 74.74 59.37 71.28 98.65 73.11 92.03 71.35 63.49 75.60 63.82 68.99 46.78 71.93 51.02 76.92 57.39 72.28 79.72
PreFed 78.00 81.95 75.35 87.29 76.48 79.91 78.01 70.41 71.71 73.26 71.69 36.42 75.47 72.34 72.36 43.55 74.81 72.98 75.76 49.66
PREFed 75.42 96.11 76.25 96.97 76.30 93.97 77.16 92.63 74.87 93.14 76.53 90.75 73.62 92.62 77.08 92.04 76.12 95.08 77.12 91.91

3DFed 75.31 13.55 75.34 27.28 74.10 62.57 74.27 9.78 75.05 10.13 72.03 13.58 73.38 39.38 73.88 34.72 75.29 15.26 74.94 14.67
DBA 64.83 99.90 72.26 93.79 48.88 99.99 73.67 88.00 73.48 93.52 69.88 98.18 72.67 69.20 65.41 99.78 73.20 86.30 69.75 80.81

FreqFed MR 76.15 10.59 73.04 88.36 74.11 60.47 60.17 98.47 74.31 9.50 61.37 97.10 72.54 30.75 75.17 69.27 73.35 79.03 74.14 39.68
PreFed 75.99 82.82 75.38 58.26 75.13 53.89 74.86 78.27 74.75 63.44 74.58 76.60 74.09 71.46 74.70 59.20 75.44 91.92 75.38 77.67
PREFed 76.18 97.60 75.88 95.70 75.17 69.10 74.43 96.86 75.49 87.51 73.03 92.84 74.18 97.44 74.32 89.79 75.84 87.75 75.21 94.42

3DFed 78.34 10.89 78.04 56.13 79.98 9.80 79.80 12.61 79.32 28.22 79.34 21.35 79.44 9.52 79.03 9.82 78.39 36.60 79.10 65.84
DBA 78.74 10.62 79.48 9.97 78.10 9.91 80.25 10.28 80.28 10.48 79.10 45.54 79.74 10.10 79.54 10.02 79.19 10.23 79.46 10.32

RFLBAT MR 78.98 10.03 78.74 10.11 79.82 9.93 79.28 10.83 80.45 10.58 79.80 10.13 79.33 9.57 78.98 9.84 77.27 10.24 78.46 10.22
PreFed 78.74 87.22 78.53 93.12 79.10 91.20 80.14 20.12 79.95 79.52 79.68 20.52 79.73 17.87 78.19 94.34 78.97 75.67 79.22 89.39
PREFed 78.70 96.77 79.12 97.40 80.06 96.81 79.66 16.65 80.43 13.63 79.97 95.00 79.08 95.34 79.24 36.61 79.31 95.05 78.92 58.18

3DFed 79.16 46.47 80.45 81.10 80.08 65.23 80.52 51.69 79.25 69.54 76.17 41.50 80.63 55.88 78.77 59.05 78.98 73.55 79.26 66.97
DBA 72.22 98.62 72.42 95.51 70.45 96.69 69.26 29.86 68.29 98.02 67.03 99.20 72.49 98.91 73.36 99.68 73.23 90.15 69.49 84.90

FedAvg MR 71.57 87.03 71.73 92.67 75.71 78.29 74.26 96.76 72.86 99.33 69.80 95.04 66.12 37.49 69.02 98.02 74.19 91.52 72.38 99.82
PreFed 80.31 88.66 81.17 90.95 80.93 92.06 80.63 79.07 80.08 80.87 81.05 81.04 79.65 80.88 80.10 86.31 80.89 90.97 80.75 85.96
PREFed 80.14 99.03 80.44 99.00 80.64 95.75 80.68 97.02 80.83 93.95 80.21 97.40 80.75 97.13 79.43 98.47 80.91 97.03 80.46 99.41

15


	Introduction
	Related Work
	FL Backdoor Attack
	FL Backdoor Defense

	Design of PREFed
	Discrepancy Analysis of Client Updates
	Attack Boundary Analysis
	Methodology

	Experiments
	Experimental Results
	ASR of Various Attacks
	Comparison with Baseline
	Attack Efficiency


	Further Analysis
	Visualization and Analysis
	Poison Rate
	Non-IID Data

	Limitaions and Future Work
	Conclusion
	The Proof of Theorem
	PREFed Algorithm
	The Implementation of Experiments
	The Number of Initial Epochs
	A3FL and Backdoor-Critical Layer Attack
	The Number of Compromised Clients
	Compared with Baseline
	The Results of Ten Experiments


