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Abstract

Generative models have advanced to the point where they can produce remarkably realistic images.
However, this capability also introduces the risk of spreading false or misleading information. Current
methods for identifying generated images face challenges such as low accuracy and limited generaliza-
tion. This paper aims to address these issues by developing a representation with strong generalization
capabilities to improve the detection of generated images. Our research has shown that real and gen-
erated images exhibit distinct latent Gaussian representations when processed through an inverse
diffusion process within a pretrained diffusion model. By leveraging this disparity, we can enhance
subtle artifacts in generated images. Based on this insight, we propose a novel image representation
called Diffusion Noise Feature (DNF). DNF is derived from the estimated noise generated during
the inverse diffusion process. A simple classifier, such as ResNet50, trained on DNF, achieves high
accuracy, robustness, and generalization capabilities in detecting generated images, even when the cor-
responding generator is constructed with datasets or structures not encountered during the classifier’s
training. Our experiments using four training datasets and five test sets demonstrate state-of-the-art
detection performance.

Keywords: Generated Image Detection, Cross-Datasets/Models Generalization, Feature Engineering for
Detection, Diffusion Model, AI-Generated Content

1 Introduction

In recent years, generative models have achieved
remarkable success, with Diffusion Models (Ho
et al., 2020; Dhariwal and Nichol, 2021; Rombach
et al., 2022) acting as catalysts for a new wave
of image generation techniques (Song et al., 2020;
Gu et al., 2022; Peebles and Xie, 2023; Liu et al.,
2022). Due to their large-scale training datasets
and numerous parameters, these models can
produce highly realistic images. However, their
widespread use has introduced significant risks,

including the spread of false information (Castillo
et al., 2011; Giglietto et al., 2019; Qi et al., 2019),
fabrication of evidence (Fanelli, 2009), breaches of
privacy (Murdoch, 2021), and fraudulent activi-
ties (Uyyala and Yadav, 2023). Malicious actors
can exploit these models to create convincing fake
images for activities such as telecommunications
fraud, leading to substantial losses. Consequently,
the ability to discern whether an image is real or
generated has become an urgent and critical issue
that demands attention.
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Fig. 1 DNF of real image and generated images from eight different generators. Nine pairs of images (Source-
DNF) from LSUN-Bedroom (Yu et al., 2015) and various generators: DDPM (Ho et al., 2020), PNDM (Liu et al., 2022),
ADM (Dhariwal and Nichol, 2021), iDDPM (Nichol and Dhariwal, 2021), VQ-Diffusion (Gu et al., 2022), Midjourney (Mid-
journey, 2022), Stable Diffusion (Rombach et al., 2022) and DALL·E 2 (Ramesh et al., 2022).

Several methods have been developed to detect
generated images (Wang et al., 2020; Sinitsa and
Fried, 2023; Shi et al., 2023; Tan et al., 2023; Wang
et al., 2023; Zhong et al., 2023; Qian et al., 2020;
Frank et al., 2020). Although these methods have
proven effective for images synthesized by earlier
models such as GANs (Goodfellow et al., 2020;
Brock, 2018; Karras, 2017; Karras et al., 2019; Zhu
et al., 2017; Choi et al., 2018), they often struggle
with images produced by state-of-the-art gener-
ative models like DALL·E (Ramesh et al., 2021,
2022; Betker et al., 2023), Stable Diffusion (Rom-
bach et al., 2022), and Midjourney (Midjour-
ney, 2022). The realism of images generated by
these advanced models closely approximates that
of real images, rendering previous detection fea-
tures insufficient for distinguishing between real
and fake images. To address this challenge, two
primary approaches should be considered. One
approach involves extending current classifiers for
detection. However, even with advanced models,
subtle differences between real and fake data can
often lead to classification failures. The alterna-
tive approach, which is the central focus of this
paper, is to design a novel representation with
exceptional generalization capabilities that can
significantly improve the detection of generated
images.

In this paper, we introduce a novel represen-
tation for detecting generated images, known as
Diffusion Noise Feature (DNF). Unlike previous
methods that extract features in the spatial or fre-
quency domains (Wang et al., 2020; Frank et al.,
2020), we leverage pre-trained diffusion models
to construct image representations. The rationale

behind this approach is that large-scale gener-
ative diffusion models are trained to learn the
distribution of real images. When images from dif-
ferent distributions undergo the inverse diffusion
process, they are unified into the same distri-
bution, appearing as pure noise in the diffusion
model. The estimated noises generated during
this process contain significant information from
the original image distribution, amplifying sub-
tle differences between real and generated images,
and manifesting distinct features in the estimated
noise.

To implement this approach, we input the
image to be detected into a pre-trained diffu-
sion model and perform the inverse diffusion
process. During this process, we collect the esti-
mated noises generated at each step and then
use a fusion strategy, determined experimentally,
to obtain the DNF used for classification. As
visualized in Figure 1, the estimated noise corre-
sponding to images from different sources is signif-
icantly different. Moreover, as shown in Figure 2,
the latent representation separation between real
and generated image distributions in the DNF
domain is more pronounced compared to other
domains (Wang et al., 2020, 2023).

Extensive experiments conducted on four
training datasets and five testsets have validated
the state-of-the-art performance of the classifier
trained on DNF in generated image detection.
(i) The classifier trained on DNF demonstrated
99.8% accuracy in both validation and testing,
which significantly surpassed the average accuracy
of 87.7% achieved by other methods (Wang et al.,
2020; Frank et al., 2020; Chai et al., 2020; Shiohara
and Yamasaki, 2022; Wang et al., 2023). (ii) The
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Fig. 2 Classifier’s Latent Representations Visualization. We visualize the latent representations learned by different
classifiers using t-SNE (Van der Maaten and Hinton, 2008). Compared to original images, CNNDetection (Wang et al.,
2020), and DIRE (Wang et al., 2023), classifiers trained on DNF achieve more separable latent representations. These
representations not only distinguish between real and fake images but also effectively classify images generated by different
models.

DNF classifier demonstrates excellent robust-
ness, achieving an accuracy of over 99.2% in
generated image detection even when the images
undergo common perturbations such as Gaussian
blur and JPEG compression during network trans-
mission. (iii) The DNF classifier exhibits strong
cross-dataset generalization capabilities. For
example, when trained on LSUN-Bedroom (Yu
et al., 2015), ImageNet (Deng et al., 2009), or
CelebA (Liu et al., 2018), and tested on the other
two datasets, the classifier demonstrates signifi-
cantly higher accuracy compared to other detec-
tion methods. (iv) The DNF classifier possesses
remarkable cross-generator generalization
capabilities, achieving high-accuracy detection
of images generated by a wide variety of genera-
tors after being trained on just a few generators.
This characteristic holds true even across genera-
tors with different principles, such as GANs and
DMs. Our main contributions are as follows:

• We introduce DNF, pioneering the use of esti-
mated noise from the inverse diffusion process to
construct an image representation for generated
image detection.

• We conducted comprehensive experiments to
prove DNF classifier achieves state-of-the-art
performance in generated image detection, sig-
nificantly outperforming existing methods.

• We propose a new real-world evaluation
pipeline, with a particular emphasis on robust-
ness, cross-dataset and cross-generator gener-
alization capabilities. Our strategy shows out-
standing performance in these aspects.

2 Related Work

2.1 Generative AI

Generative Adversarial Networks (GANs)
GANs (Goodfellow et al., 2020) are a class of unsu-
pervised machine learning frameworks to generate
more realistic images. Unconditional GANs such
as BigGAN (Brock, 2018) and StyleGANs (Karras
et al., 2019, 2020, 2021) learn the latent distri-
bution of real samples and generate high-quality
images by randomly sampling from the learned
latent space. Conditional GANs can use input
images as conditional constraints to shape the
generated images. Models like CycleGAN (Zhu
et al., 2017) and StarGAN (Choi et al., 2018)
are designed with this objective in mind, enabling
tasks such as image translation and style trans-
fer. Text-conditioned GANs require only a textual
prompt to specify the content and style of the gen-
erated images, represented by GALIP (Tao et al.,
2023) and GigaGAN (Kang et al., 2023).
Diffusion Models (DMs) DMs (Gu et al., 2022;
Phung et al., 2023; Li et al., 2023; Peebles and Xie,
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2023), with their remarkable image generation
performance, have demonstrated the potential to
become the next generation of generative mod-
els. DDPM (Ho et al., 2020) achieves high-quality
image generation by injecting noise into images
during the inverse diffusion process and learning
how to reconstruct the original image during dif-
fusion process. DDIM (Song et al., 2020) proposes
using a method of deterministic Markov chains to
reduce the number of diffusion steps, thus acceler-
ating the image generation speed. ADM (Dhariwal
and Nichol, 2021), for the first time, surpasses
GANs in image generation by introducing classi-
fier guidance to enhance the quality of generated
images. Models such as Stable Diffusions (Rom-
bach et al., 2022) and Midjourney (Midjourney,
2022), as text-to-image diffusion models, have
achieved remarkable image generation capabili-
ties through executing diffusion processes in latent
space and training on large-scale datasets.

2.2 Generated Image Detection

To mitigate potential risks associated with gen-
erated images, researchers are gradually paying
attention to generated image detection (Sinitsa
and Fried, 2023; Tan et al., 2023; Chai et al., 2020;
Corvi et al., 2023; Cao et al., 2022). CNNDetec-
tion (Wang et al., 2020) has discovered artifacts in
the frequency domain of CNN-generated images,
making detection of generated images feasible. It
has constructed the first universal CNN-generated
image detector through post-processing of images.
Similarly, FrequencyDetection (Qian et al., 2020)
classifies generated and real images by observing
features presented after discrete cosine transfor-
mation. DisGRL (Shi et al., 2023) incorporates
three proposed components to learn both forgery-
sensitive and genuine compact visual patterns.
DIRE (Wang et al., 2023) utilizes the Diffusion
Model to reconstruct images and observes the dif-
ferences between the original and reconstructed
images for image detection. However, these meth-
ods struggle to cope with the increasingly evolving
generative models, exhibiting significant deficien-
cies in cross-dataset and cross-generator detection
capabilities, whereas our approach addresses this
critical shortfall.

3 Method

In this section, we will first provide a brief intro-
duction to the relevant background of the Dif-
fusion Model, and then give the implementation
details of Diffusion Noise Feature.

3.1 Preliminaries

Given an initial data distribution x0 ∼ q(x0),
DDPM (Ho et al., 2020) first uses a manually
designed Markov chain to invert the data to a
noise distribution according to Equation 1. Then
the model is trained to learn a Markov chain in
Equation 2 to gradually restore noisy images to
their original state.

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

β is a hyper-parameter that controls the manner
noise is added in the inverse diffusion process. θ
represents the parameters learned by the model
during the training process. µθ and Σθ denote the
mean and covariance decided by the model during
the diffusion process.

DDIM (Song et al., 2020), allowing the process
to be significantly accelerated without the Markov
assumption, can sample xt−1 from xt via

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

t
θ(xt)√

αt

)
+
√

1− αt−1 − σ2
t · ϵtθ(xt) + σtϵt. (3)

ϵt ∼ N (0, I) is standard Gaussian noise inde-
pendent of xt. ϵtθ(xt) represents the estimated
noise generated by the model at time step t
and α is a hyper-parameter that controls the
diffusion process. In fact, σt controls the entire
diffusion process. For example, when σt =√

(1− αt−1)/(1− αt)
√

1− αt/αt−1 for all t, the
process in Equation 3 represents the diffusion pro-
cess in DDPM. Let σt = 0, making the forward
process in DDIM determined by the given xt and
x0.

Assuming T is the total number of steps
required in DDPM, when T is sufficiently large
(e.g., 1000), Equation 3 be interpreted as an
Euler method for integrating ordinary differential
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equations (ODEs) akin to

xt−∆t√
αt−∆t

=
xt√
αt

+

(√
1−αt−∆t

αt−∆t
−
√

1−αt

αt

)
ϵtθ(xt).

(4)

Defining γ =
√

(1− α)/α, x̄ = x/
√
α, the corre-

sponding ODE in Equation 4 is then reformulated
as

dx̄ = ϵtθ(
x̄(t)√
γ2 + 1

, t)dγ(t). (5)

Now the inverse diffusion process, which progress
from xt to xt+1, can be rewritten as

xt+1√
αt+1

=
xt√
αt

+

(√
1− αt+1

αt+1
−
√

1− αt

αt

)
ϵtθ(xt).

(6)

To enhance the computational efficiency of this
equation, the Denoising Diffusion Implicit Model
(DDIM) employs a strategy of subsampling. It
selects a strategic subsequence {τ0, τ1, . . . , τS}
from the comprehensive sequence {0, 1, . . . , T}.
Here, S denotes the reduced total number of steps
necessary for the optimized forward process, which
could be, for instance, 20 steps. By employing this
approach, Equation 6 adeptly reformulated as:

xτt+1√
ατt+1

=
xτt√
ατt

+

(√
1−ατt+1

ατt+1

−
√

1−ατt

ατt

)
ϵτtθ (xτt).

(7)

By selecting the subsequence {τi} appropriately,
we can significantly expedite the entire diffu-
sion process. Our designed Diffusion Noise Fea-
ture (DNF) is derived from the estimated noise
sequence {ϵτtθ (xτt)}.

3.2 Diffusion Noise Feature

Shortcomings of previous methods Given an
initial real image distribution pr(x) and a gener-
ated image distribution pg(x), the advanced gen-
erative capability of existing models allows pg(x)
to closely approximate with pr(x), thereby com-
plicating the task of discerning samples from these
two distributions. Prior approaches (Frank et al.,
2020; Wang et al., 2020) have primarily focused on
identifying subtle distinctions between pg(x) and
pr(x) using methods like frequency domain anal-
ysis which encounter limitations when confronted
with the realistic images generated by DM-based

generators (Dhariwal and Nichol, 2021; Rombach
et al., 2022).
Goal Our goal is to design a innovative image
representation that recasts the original image dis-
tribution, pg(x) and pr(x), into distinct new distri-
butions, p′g(x) and p′r(x). These new distributions
should be readily distinguishable, facilitating the
classification of samples by various detectors. In
essence, this novel representation is intended to
the subtle differences between generated images
and real images, thereby assisting the detectors to
accurately categorize samples as either generated
or real.
Motivation In our research, we have discerned
a pronounced divergence in the characteristics of
images originating from disparate distributions
when undergoing the identical inverse diffusion
process according to Equation 6. This contrast
is specifically evident in the manifestation of
the estimated noise sequence {ϵτtθ }. As shown
in Figure 1, the patterns of {ϵτtθ } corresponding
to generated and real images are entirely dis-
tinct, with even images from different generators
showing different characteristics in {ϵτtθ }.

The rationale behind this lies in the diffusion
models’ inherent tendency to consolidate samples
from diverse distributions into a unified distribu-
tion,thereby exaggerating the nuanced discrepan-
cies in the fine details among various samples.
Our subsequent experiments have demonstrated
that this phenomenon is not influenced by fac-
tors such as image content, image resolution, or
the number of iterations within the inverse diffu-
sion process. The manifestation of estimated noise
sequence {ϵτtθ } corresponding to images is strongly
correlated with the source of image generation.
Therefore, this observation can be harnessed to
devise an image representation that is conducive
to the detection of generated images.
Implementation Suppose we have an image
x0 that needs to be detected, a pre-trained
diffusion model Fθ with parameter θ and a
time step sequence {τ0, τ1, . . . , τS} sampled from
{0, 1, . . . , T}. We can obtain the estimated noise
sequence {ϵτtθ } by inputting x0 into the diffusion
model Fθ and executing the inverse diffusion pro-
cess in Equation 7. In order to obtain a usable
DNF from the estimated noise sequence {ϵτtθ } for
detection, we need to design a fusion strategy
G. Since the estimated noise ϵτiθ at different time
step τi during the diffusion process may contain
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Fig. 3 Illustration of Generated Image Detection based on DNF. We leverage a Diffusion Model Fθ pre-trained on
a large-scale dataset to perform the inverse diffusion process on the image under detection. By employing a fusion strategy
G, we convert the collected estimated noises {ϵτtθ } into a classifiable DNF, which is then utilized to train the classifier.

different information, different fusion strategies
may impact detection accuracy. A comprehensive
discussion on various fusion strategies will be pro-
vided later. In this section, we define the default
fusion strategy G to extract the first sample ϵτ0θ
from the estimated noise sequence {ϵτtθ } as the
DNF for detection.

DNF(x0) = G({Fθ(xi), ti}), i ∈ {0, . . . , S}. (8)

Upon completion of the DNF computation, the
resulting DNF can be harnessed to train a detec-
tor for generated images. This implementation is
shown in Equation 8 and explained in detail in
Figure 3.

4 Experiments

Our experimental framework encompasses four
primary components: comparative experiments
with existing methods, generalization capability
evaluation, perturbation robustness evaluation,
and ablation studies. Check the supplementary file
for more experimental results and details.

4.1 Experimental Setup

Datasets To ensure a fair comparison with these
methods, we conducted our experiments on three
widely used datasets, DiffusionForensics (Wang
et al., 2023), CNNSpot (Wang et al., 2020)
and GenImage (Zhu et al., 2024), which con-
tain authentic images from sources such as Ima-
geNet (Deng et al., 2009), LSUN-Bedroom (Yu

et al., 2015), and CelebA (Liu et al., 2018), as well
as images generated by various types of generative
models, e.g., GANs, DMs.

Baselines We select CNNDetection, SBI, Patch-
Forensics, F3Net, and DIRE as baselines, all
widely recognized generated image detection
methods, covering approaches like image post-
processing, frequency domain detection, and
image reconstruction.

CNNDetection (Wang et al., 2020) intro-
duced a detection model trained to distinguish
images generated by CNN-base models. However,
this model exhibits strong generalization ability,
meaning it can effectively detect images generated
by various CNN models, not just the one it was
trained on.

SBI (Shiohara and Yamasaki, 2022) is a
method applied for DeepFake detection. It trains
a universal generated image detector by blend-
ing fake source images with target images derived
from a single original image. This approach
enables the detector to learn and recognize syn-
thetic images, regardless of the specific source or
target images used in the blending process.

Patchforensics (Chai et al., 2020) utilizes
a patch-wise classifier, which has been reported
to outperform simple classifiers in detecting fake
images. Instead of analyzing entire images, Patch-
forensics focuses on examining smaller patches
within an image to identify inconsistencies or
anomalies that indicate image manipulation or
forgery.
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F3Net (Qian et al., 2020) emphasizes the
significance of frequency information in detect-
ing generated images. By analyzing the frequency
components of an image, F3Net can identify dis-
crepancies or irregularities that are indicative of
image tampering or generation.

DIRE (Wang et al., 2023) utilizes diffusion
models to reconstruct images and uses the differ-
ence between the original image and the recon-
structed image as the feature for classification. By
comparing the differences between the features of
real images and generated images, excellent per-
formance in generated image detection can be
achieved.

Training Details Before training, we preprocess
the images, which consists of two parts: calcu-
lating DNF and data augmentation. We rescale
all images to a uniform resolution of 256×256
to ensure that the Diffusion Model pretrained
on LSUN-Bedroom can correctly compute the
DNF for each image. Before training, we also
perform horizontal flipping with a probability
of 50%. During training, we adopt a training
setup similar to CNNDetection and DIRE, using
ResNet50 (He et al., 2016) as the classifier. We use
the Adam (Kingma and Ba, 2015) optimizer with
β1 = 0.9, β2 = 0.999, a batch size of 64, and an
initial learning rate of 10−4. The learning rate is
reduced by a factor of 10 if after 5 epochs the vali-
dation accuracy does not increase by 0.1%, and we
terminate training when the learning rate reaches
10−6.

Evaluation metrics. We primarily evaluate our
model using two metrics: Accuracy and Average
Precision. These are two commonly used and effec-
tive metrics in generated image detection (Wang
et al., 2020, 2023).

4.2 Baseline Comparison

We evaluated the performance of the DNF clas-
sifier and other baselines in generated image
detection on DiffusionForensics (Wang et al.,
2023). When evaluating the baselines, we made
every effort to use their officially released code
and model parameters for testing. Addition-
ally, we retrained CNNDetection (Wang et al.,
2020), Patchforensics (Chai et al., 2020), and
F3Net (Frank et al., 2020) with the same settings

as the DNF classifier to demonstrate DNF clas-
sifier’s superior performance compared to these
methods when using the same dataset. We con-
ducted comprehensive evaluations on the LSUN-
Bedroom Split of DiffusionForensics and present
the results in Table 1.

Our experiments indicates that traditional
generated image detection methods represented
by CNNDetection, Patchforensics, and SBI (Shio-
hara and Yamasaki, 2022) cannot effectively
detect images generated by diffusion models.
While they perform well in detecting images gen-
erated by GANs, they exhibit a significant perfor-
mance decline when faced with images from these
previously unseen types of generators. Their aver-
age accuracy stands at 55.8%, with an average
precision of 71.7%.

After retraining CNNDetection, F3Net, and
Patchforensics on the LSUN-Bedroom Split of
DiffusionForensics, we found that these methods
indeed exhibit good detection performance for
images generated by diffusion models, achieving
average accuracy of 86.0% and average precision of
94.1%. However, this detection performance seems
to not generalize to generator categories unseen
during training. While achieving average accuracy
of 94.8% and average precision of 99.2% on seen
generators, they only achieve average accuracy of
82.2% and average precision of 91.9% on unseen
generators.

The most outstanding performance among the
baselines is achieved by DIRE, reaching an accu-
racy of 92.6% and a precision of 99.4%, and it
can generalize detection capability to the vast
majority of generators. Our method, the detector
trained on DNF achieves remarkably impressive
performance, surpassing all previous methods on
this dataset, achieving 99.8% accuracy and 99.9%
average precision.

4.3 Generalization Capability

In generalization capability evaluation, we
selected the best-performing CNNDetec-
tion (Wang et al., 2020) after retraining and
the overall best-performing DIRE (Wang et al.,
2023) to conduct a generalization evaluation
experiment with our DNF. In this experiment,
each method will be retrained on three training
splits of DiffusionForensics (Wang et al., 2023)
and CNNSpot (Wang et al., 2020) and tested on
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Table 1 Comparison to Existing Methods. We evaluate the performance of the baseline and our proposed method
for generated image detection on the LSUN-Bedroom split of the DiffusionForensics dataset. ”*” indicates that the
method was retrained on the training set, and ”†” denotes that images generated by the model were included in the
training data. We report Acc (%) / AP (%) as the metrics.

Method
Testing Generators Total

ADM† DDPM iDDPM† LDM PNDM† SD-v2 VQ-D DALL-E 2 IF Midjourney Avg.

CNNDet 50.1/63.5 50.2/79.4 50.2/78.0 50.1/61.4 50.1/60.3 50.8/80.7 50.1/70.8 52.8/87.4 51.3/79.9 50.9/58.5 50.6/71.9
Patchfor 50.2/67.4 53.2/74.2 51.2/63.4 56.7/89.1 56.5/72.4 54.2/72.7 87.2/95.4 50.1/68.9 50.0/56.3 56.1/57.2 56.5/71.7
SBI 53.4/60.8 56.9/50.8 58.4/56.2 83.4/90.2 73.1/95.6 59.2/70.9 56.2/74.2 51.2/56.4 61.3/72.3 52.3/87.9 60.5/71.5
DIRE 94.7/99.7 92.6/99.6 94.6/99.7 94.6/99.5 94.3/99.1 94.6/99.7 94.6/99.8 89.5/99.5 94.6/99.7 82.1/98.0 92.6/99.4
F3Net∗ 91.2/97.8 90.7/98.5 89.9/99.2 98.1/100 92.3/97.2 81.1/90.4 92.4/97.3 78.1/86.2 73.6/82.2 75.9/81.1 86.3/92.9
Patchfor∗ 94.1/99.8 72.9/98.2 95.2/99.4 97.2/100 94.2/100 74.5/90.2 95.4/100 85.2/98.2 65.4/82.3 53.2/88.6 83.7/95.7
CNNDet∗ 98.8/99.9 98.5/99.9 99.1/99.9 97.9/99.8 99.1/99.9 80.4/93.5 78.8/94.6 94.5/98.5 80.3/94.0 53.4/58.1 88.1/93.8
DNF (Ours) 100/100 99.7/100 100/100 100/100 100/100 100/100 99.8/100 100/100 99.9/100 98.9/99.9 99.8/99.9

Table 2 Generalization Capability Evaluation - I. We evaluate the generalization capability of the baseline and
our proposed method on the ImageNet and CelebA split of the DiffusionForensics dataset and GenImage. ”†” denotes that
images generated by the model were included in the training data. We report Acc (%) / AP (%) as the metrics.

Method
Training DF ImageNet GenImage DF CelebA Total
Dataset ADM† SD-v1 SD-v1.4 SD-v1.5 Glide wukong SD-v2† Mid. DALL-E 2 IF Avg.

CNNDet

LSUN-B. 63.6/80.6 53.3/63.8 52.8/55.0 53.0/56.0 78.3/88.1 50.8/51.8 12.9/9.8 11.8/7.7 49.0/49.4 12.8/9.6 43.8/47.2
ImageNet 71.6/79.8 51.0/51.2 41.3/40.9 40.6/40.5 60.5/63.4 45.9/48.9 37.0/41.6 48.4/49.1 54.2/52.2 36.5/41.2 48.7/50.9
CelebA 51.0/58.8 52.6/68.0 51.1/50.3 52.9/57.5 50.5/50.0 53.1/57.1 78.4/69.9 73.6/67.7 54.2/52.2 53.6/53.9 57.1/58.5
CNNSpot 51.2/82.0 50.5/69.5 50.4/59.4 50.6/60.1 52.4/68.6 50.6/59.0 52.8/87.4 54.9/90.1 53.8/87.9 50.3/61.3 51.8/72.5

DIRE

LSUN-B. 99.8/99.8 99.1/99.9 91.2/98.6 91.6/98.8 92.4/99.5 90.1/98.3 49.9/49.9 50.4/50.2 50.4/50.2 50.3/50.2 76.5/79.5
ImageNet 99.8/99.9 98.2/99.9 95.4/99.7 96.3/99.9 67.2/73.1 52.8/63.8 50.0/50.0 50.0/50.0 50.0/50.0 50.0/50.0 71.0/73.6
CelebA 99.8/99.9 58.2/66.2 53.4/62.1 55.8/67.8 63.1/71.5 66.8/78.8 96.7/100 95.0/100 93.4/100 96.8/100 77.9/84.6
CNNSpot 72.8/83.4 50.1/50.1 51.2/53.6 49.8/50.1 73.4/76.8 58.6/61.2 50.1/50.2 58.2/62.9 67.2/75.3 52.1/53.3 58.4/61.7

DNF

LSUN-B. 98.0/100 96.3/100 98.6/99.9 98.6/99.9 99.9/100 99.7/100 75.5/99.8 97.5/99.9 100/100 100/100 96.4/99.9
ImageNet 100/100 98.9/99.9 100/100 100/100 100/100 100/100 98.7/100 99.0/100 100/100 100/100 99.9/99.9
CelebA 100/100 98.9/100 99.7/99.9 99.8/100 99.7/99.9 99.8/100 100/100 100/100 100/100 100/100 99.7/99.9
CNNSpot 86.9/100 77.7/100 77.5/99.1 77.8/99.1 79.2/96.6 80.3/98.7 60.6/99.1 86.1/99.7 85.0/99.7 75.8/99.6 78.7/99.5

five test set from DiffusionForensics, CNNSpot
and GenImage (Zhu et al., 2024) to assess the
methods’ cross-dataset and cross-generator gen-
eralization capabilities. The evaluation results
across multiple datasets can be found in the
Table 2, Table 3 and Table 4.
Cross-dataset Generalization We found that
when the training and testing datasets are from
the same source, all three methods demonstrate
good detection performance. Taking DIRE as an
example, the DIRE detector trained on the LSUN-
Bedroom Split or CelebA Split achieves accuracies
of 92.6% and 95.4% respectively on the corre-
sponding test sets. However, when tested on a
test set from a different source than the train-
ing set, the accuracy of DIRE in cross-validation
between LSUN-Bedroom Split and CelebA Split
drops to 50.2% and 67.5% respectively. In com-
parison, DNF achieves average accuracy of 96.2%
and average precision of 99.8% in all cross-dataset
generalization tests, demonstrating superior cross-
dataset generalization performance compared to
other methods. Especially, the DNF detector

trained on the ImageNet Split achieves an aver-
age precision and accuracy of 99.9% across the five
test sets. The DNF detector trained on CNNSpot,
which exhibits poorer generalization performance.
Considering that this training set only contains
images generated by ProGAN and real images
from ImageNet, it is indeed quite challenging for
the model trained on CNNSpot to generalize to
other datasets.
Cross-generator Generalization Existing
detection methods often successfully identify the
generator of the training set images. CNNDe-
tection trained on CNNSpot can detect images
generated by ProGAN (Karras, 2017) with 100%
accuracy, but when detecting other generators
such as StyleGAN (Karras et al., 2019), the
accuracy drops to 66.3%. DIRE trained on the
ImageNet Split achieves a 99.8% accuracy in
detecting images generated by ADM (Dhariwal
and Nichol, 2021), and 96.6% accuracy in Sta-
ble Diffusions, but when detecting images from
other generators, e.g., Glide, wukong, it only
achieves an 60.0% accuracy. Meanwhile, DNF
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Table 3 Generalization Capability Evaluation - II. We evaluate the generalization capability of the baseline and
our proposed method on the LSUN split of the DiffusionForensics dataset. ”†” denotes that images generated by the
model were included in the training data. We report Acc (%) / AP (%) as the metrics.

Method
Training LSUN-Bedroom Split Total
Dataset ADM† DDPM iDDPM† LDM PNDM† SD-v2 VQ-D DALL-E 2 IF Mid. Avg.

CNNDet

LSUN-B. 98.8/99.9 98.5/99.9 99.1/99.9 97.9/99.8 99.1/99.9 80.4/93.5 78.8/94.6 94.5/98.5 80.3/94.0 53.4/58.1 88.1/93.8
ImageNet 72.4/74.1 71.2/65.7 76.8/80.8 64.0/60.1 76.7/85.8 67.4/61.3 78.4/93.1 77.2/80.4 72.1/69.1 70.1/73.8 72.6/81.8
CelebA 55.1/63.3 49.1/48.3 51.9/69.0 56.6/64.8 45.9/34.0 83.7/92.9 52.1/60.9 50.0/51.3 55.1/69.0 50.9/60.3 55.0/61.4
CNNSpot 50.1/63.5 50.2/79.4 50.2/78.0 50.1/61.4 50.1/60.3 50.8/80.7 50.1/70.8 52.8/87.4 51.3/79.9 50.9/58.5 50.6/71.9

DIRE
LSUN-B. 94.7/99.7 92.6/99.6 94.6/99.7 94.6/99.5 94.3/99.1 94.6/99.7 94.6/99.8 89.5/99.5 94.6/99.7 82.1/98.0 92.6/99.4
ImageNet 60.2/91.3 54.9/86.8 60.3/91.7 57.9/89.1 57.6/79.6 58.9/90.5 57.5/94.0 40.6/64.2 47.6/66.1 28.2/61.3 52.3/81.5
CelebA 67.8/82.7 62.6/62.9 62.4/67.1 75.3/97.9 57.4/68.0 74.3/93.0 75.2/95.0 67.1/93.7 78.3/97.0 54.8/39.9 67.5/79.7
CNNSpot 74.8/86.9 72.3/86.3 65.4/81.3 66.1/75.2 52.1/56.8 50.1/52.1 55.4/58.9 72.9/78.3 53.6/65.2 61.3/64.9 62.4/70.6

DNF

LSUN-B. 100/100 99.7/100 100/100 100/100 100/100 100/100 99.8/100 100/100 99.9/100 98.9/99.9 99.8/99.9
ImageNet 100/100 100/100 100/100 99.9/100 100/100 100/100 100/100 100/100 98.8/99.2 100/100 99.9/99.9
CelebA 100/100 99.2/100 100/100 99.2/99.9 100/100 100/100 100/100 98.6/99.9 100/100 98.1/99.3 99.5/99.9
CNNSpot 99.7/99.7 97.7/99.7 99.9/99.7 99.9/99.7 97.7/99.7 82.6/99.5 99.9/99.7 90.9/99.6 97.5/99.7 99.7/99.7 96.5/99.7

Table 4 Generalization Capability Evaluation - III. We evaluate the generalization capability of the baseline and
our proposed method on the CNNDetection dataset. ”†” denotes that images generated by the model were included in the
training data. We report Acc (%) / AP (%) as the metrics.

Method
Training CNNSpot Total
Dataset ProGAN† StyleGAN StyleGAN2 StarGAN3 BigGAN CycleGAN GuaGAN StarGAN ProjGAN Diff-ProjGAN Avg.

CNNDet

LSUN-B. 68.6/89.7 71.1/88.5 65.8/83.2 97.9/99.8 58.3/89.7 54.9/60.3 64.8/74.4 75.5/86.1 74.1/91.4 68.3/88.6 69.9/85.2
ImageNet 84.4/92.8 82.8/88.8 84.3/89.2 50.1/61.4 80.3/86.4 57.4/53.9 75.3/84.1 94.5/98.8 63.3/62.2 59.2/56.8 73.2/77.4
CelebA 50.3/51.6 54.3/62.2 53.7/70.4 97.9/99.8 51.1/53.2 50.0/48.4 52.3/59.3 50.0/44.0 51.8/52.8 52.4/55.3 56.4/59.7
CNNSpot 100/100 73.4/98.5 68.4/97.9 50.1/61.4 59.0/88.2 80.7/96.8 79.2/98.1 80.9/95.4 52.8/90.0 52.0/88.3 69.7/91.5

DIRE

LSUN-B. 52.8/58.8 51.1/56.7 51.7/58.0 84.6/99.6 49.7/46.9 49.6/50.1 51.3/47.4 47.8/40.7 84.6/99.6 84.6/99.5 60.8/65.7
ImageNet 51.6/56.2 52.3/58.9 50.1/50.3 67.5/78.9 66.9/73.2 53.3/60.1 51.2/65.8 88.2/95.7 56.2/62.1 54.9/60.2 59.2/66.1
CelebA 62.1/75.2 66.3/69.3 50.1/56.2 53.2/62.1 52.1/53.2 56.8/52.1 51.3/56.3 52.1/56.3 63.2/71.2 66.6/73.2 57.4/62.5
CNNSpot 95.2/99.3 82.5/93.2 74.8/88.9 82.1/91.2 72.1/78.9 72.9/80.1 65.8/73.5 96.7/99.6 67.2/76.9 67.8/76.8 77.7/85.8

DNF

LSUN-B. 99.9/100 99.3/100 97.8/100 99.3/100 100/100 100/100 100/100 100/100 99.9/100 99.9/100 99.6/100
ImageNet 100/100 98.6/99.7 99.9/100 99.9/100 100/100 100/100 99.9/100 100/100 100/100 100/100 99.8/99.9
CelebA 100/100 100/100 99.8/100 100/100 99.9/100 100/100 98.3/100 100/100 100/100 100/100 99.8/100
CNNSpot 100/100 99.6/100 97.2/100 97.7/99.7 90.5/100 78.8/100 85.5/100 100/100 99.8/99.7 99.8/99.7 94.9/99.9

achieves detection accuracies for unseen genera-
tors of 96.2%, 99.8%, 99.6%, and 78.7% across
these three test sets. Crucially, according to the
comprehensive result in supplementary material,
DNF can even generalize between generators with
different principles.

4.4 Perturbation Robustness

When images are shared on social networks, they
often undergo perturbations such as Gaussian
blur or JPEG compression, resulting in the loss
of image details. This loss significantly impacts
the performance of generated image detection. To
evaluate the robustness of various methods under
such perturbations, we designed robustness exper-
iments using images from the LSUN-Bedroom
split of the DiffusionForensics.

We applied varying degrees of perturbation to
the images, including Gaussian blur with σ ∈ {0,
1, 2, 3} and JPEG compression with Quality ∈

{100, 65, 30}, to explore the performance fluctu-
ations of different methods as perturbation inten-
sity increases. In Figure 4, as the perturbation
intensifies, the detailed information in the images
becomes less distinct, making detection more chal-
lenging. Methods like PatchForensics (Chai et al.,
2020) and F3Net (Qian et al., 2020) demon-
strate robustness to specific types of perturbations
due to their design principles. In contrast, DNF,
with its inherent ability to enhance image details,
ensures that even weakened details remain effec-
tive for image generation detection. As a result,
DNF showed minimal performance degradation,
consistently achieving detection accuracy above
99.2%.

Additionally, we assessed the robustness of
the detector against disturbances such as resizing,
cropping, and rotation to evaluate their impact
on DNF’s performance. We present the results in
Table 5. Since these transformations are common
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Fig. 4 Perturbation Robustness Evaluation - I. The perturbations added to the images include Gaussian blur with
σ ∈ {0, 1, 2, 3} and JPEG compression with Quality ∈ {100, 65, 30}. DNF demonstrates excellent resistance to perturbations,
consistently maintaining an accuracy over 99.2%. For more types of perturbations, please refer to the supplementary
materials.

Table 5 Perturbation Robustness Evaluation - II. Before resizing the images to a uniform size for calculating
DNF, we perform the perturbation on the test images. When encountering significant perturbation such as cropping to
64× 64 pixels or resizing to 128× 128 pixels, the detection accuracy will significantly decrease. The former is due to severe
semantic information loss, while the latter is due to pixel detail loss during the resizing process. Minor disturbances do not
cause significant damage to the detector’s performance. We report Acc (%) / AP (%) as the metrics.

Perturbation ADM iDDPM LDM SD v2

None 100/100 100/100 100/100 100/100
Crop 64 92.1/98.7 91.7/98.8 93.4/99.8 87.2/88.2
Crop 224 99.9/100 100/100 100/100 100/100
Resize 128 98.2/99.6 99.9/100 95.2/99.9 100/100
Resize 1024 99.8/100 99.9/100 100/100 99.9/100
Rotation π/2 100/100 99.9/100 99.9/100 100/100
Rotation π 99.9/100 99.7/100 100/100 99.8/100

both in image transmission and data augmenta-
tion, they did not significantly degrade most meth-
ods’ performance. However, excessive cropping of
image content caused a noticeable performance
drop in DNF.

4.5 Ablation Studies

Effectiveness of Diffusion Model Fθ. In
Equation 8, we require a pre-trained diffusion
model Fθ to compute estimate noise at spe-
cific timesteps. Considering that diffusion models
with different architectures pre-trained on various
datasets may produce differing noise estimates,
we investigate their impact on detection perfor-
mance. Specifically, we conduct experiments using

DDIM (Song et al., 2020) or ADM (Dhariwal and
Nichol, 2021) pre-trained on LSUN-Bedroom (Liu
et al., 2018) or ImageNet (Deng et al., 2009)
datasets to construct DNF. ADM, differing in
structure from DDIM, incorporates a classifier
guidance mechanism to enhance the quality of
generated images. The experimental results are
presented in Table 6.

We observed that diffusion models Fθ with
different architectures, pre-trained on various
datasets, did not significantly affect detection
performance. However, it is worth noting that,
based on the original intention behind design-
ing DNF and issues identified during experiments,
we emphasize the importance of ensuring that
the diffusion model is sufficiently pre-trained.
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Table 6 Ablation Studies on Effectiveness of Diffusion Model Fθ. We evaluate the impact of diffusion model F
and pre-train parameters θ on the performance of our proposed method on the LSUN-Bedroom split of the
DiffusionForensics dataset. ”†” denotes that images generated by the model were included in the training data. We report
Acc (%) / AP (%) as the metrics.

Diffusion Pretrain DF LSUN-Bedroom Total
Model F Dataset θ ADM† DDPM iDDPM† LDM PNDM† SD-v2 VQ-D DALL-E 2 IF Midjourney Avg.

DDIM
LSUN-B. 100/100 99.7/100 100/100 100/100 100/100 100/100 99.8/100 100/100 99.9/100 98.9/99.9 99.8/99.9
ImageNet 100/100 99.2/100 100/100 100/100 100/100 99.6/99.9 100/100 100/100 99.6/100 100/100 99.8/99.9

ADM
LSUN-B. 100/100 100/100 100/100 99.8/100 100/100 99.1/100 100/100 98.9/99.4 100/100 99.2/99.9 99.7/99.9
ImageNet 100/100 100/100 100/100 97.2/98.9 100/100 99.2/99.9 100/100 99.8/100 99.7/100 100/100 99.5/99.8

Table 7 Ablation Studies on Effectiveness of Fusion Strategy G. We evaluate the impact of fusion strategy G on
the performance of our proposed method. We report ACC (%) / AP (%) as the metrics.

Method
Testing Generators

Avg.
ADM iDDPM LDM StyleGAN SD-v1

Gfirst 100/100 100/100 100/100 99.3/100 96.3/100 99.1/100
Gavg 98.2/99.9 99.1/100 97.5/100 98.2/99.9 98.2/100 98.2/99.9
Glast 100/100 100/100 99.2/99.9 96.2/99.4 93.1/98.8 97.7/99.6

A well-converged diffusion model should unify
images from diverse data distributions into a sin-
gle noise distribution. This is crucial as a fully
converged diffusion model not only conveys infor-
mation across different data distributions but also
captures high-frequency image details more effec-
tively through the denoising task. The estimated
noises generated by such diffusion models can
then reflect the unique characteristics of images
from various data distributions, meeting the nec-
essary requirements for reliable generated image
detection.
Effectiveness of Fusion Strategy G. During
the image generation process by the diffusion
model, the estimated noise generated at each time
step contains different information. The fusion
strategy G determines how to convey this infor-
mation into the DNF used for detection. We have
devised three straightforward fusion tactics: Gfirst

selects the first element from an estimated noise
sequence; Gavg takes the average of the entire
sequence; and Glast extracts the last element of
the sequence. In previous experiments, we com-
monly used Gfirst as the default fusion strategy.
To investigate the impact of different fusion strate-
gies on DNF detection, corresponding experiments
were designed to verify the effects of using dif-
ferent fusion strategies on the same dataset, and
the experimental results are presented in Table 7.
Gfirst exhibits the best detection performance,

while Glast’s detection performance is relatively
poorer.

We visualized the estimated noise sequences
for a image generated by Stable Diffusion in
Figure 5. It can be observed that as the inverse
process progresses, the estimated noise gradu-
ally approaches pure noise. In our understanding,
the estimated noise contains a significant amount
of high-frequency information and pixel distribu-
tion information of the current image. Therefore,
the ϵτ0θ contains more information beneficial for
image detection than the subsequent noise esti-
mations. This well explains why, in comparison
to Gavg and Glast, Gfirst provides better detection
performance.

Of course, this does not mean that subsequent
estimated noises are meaningless; it is simply
because we are currently using a simple classifier
like ResNet50 (He et al., 2016), and the repre-
sentation in the form of a single image better
illustrates the simplicity of DNF. The entire esti-
mated noise sequence {ϵτiθ } contains information
from the original image distribution to the pure
noise distribution. If we could design a detec-
tion structure tailored for the sequence, it should
achieve better detection results, which is also the
direction of our future efforts.
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Fig. 5 Estimated Noise Sequences Visualization. We visualized the estimated noise sequence of an image generated
during the inverse diffusion process performed by DDIM. As the timesteps increase, the estimated noise progressively
approaches pure noise, resulting in performance differences when using different fusion strategies G.

Table 8 Image Format Bias. Tests are conducted
using training sets and test sets in different formats. The
vertical columns representing the training set formats and
the horizontal rows representing the test set formats.

Original PNG JPEG

Original 98.6/99.9 93.1/98.2 95.7/99.7
PNG 96.4/99.9 98.9/99.9 94.3/99.7
JPEG 94.3/99.6 86.9/92.5 96.1/99.9

5 Discussion

5.1 Image Format Bias

Considering that our dataset consists of images
stored in different formats, classifiers may learn
biases introduced by the dataset composi-
tion (Grommelt et al., 2024). To demonstrate the
impact of this factor on classifier performance, we
conducted experiments on the DiffusionForensics
dataset. We saved the training set exclusively in
either PNG or JPEG format and evaluated per-
formance on test sets saved in both PNG and
JPEG formats. The experimental results are pre-
sented in Table 8. We observed that the image
format bias introduced by the dataset composition
does indeed affect the classifier. However, the per-
formance differences were acceptable and did not
impact the overall experimental outcomes.

5.2 Frequency Domain Analysis

For the frequency domain analysis, we randomly
selected 1,000 images generated by each genera-
tor and performed Fourier transforms on them.
We then calculated the average of the Fourier
transform results. Our findings revealed that for
the same image content “Bedroom”, there were
notable differences for DNF in the frequency
domain among images generated from different
sources. The separation of real and generated
images in the frequency domain helps explain

the superiority of using DNF to achieve high-
performance detection. The results of the fre-
quency domain analysis have been visualized in
Figure 6, with all data processed using logarith-
mic transformation. It can be observed that the
frequency domain spectrum of generated images
exhibits periodic grid-like and dot-like features,
while the frequency distribution of real images is
relatively uniform.

5.3 Speed Advantage

One important point is that Gfirst can signifi-
cantly reduce the running time of the pipeline
compared to other strategies. For instance, when
using a 20-step DDIM, DIRE requires the exe-
cution of 40 steps of estimated noise inference,
whereas computing DNFfirst only requires a sin-
gle step. Ideally, this could achieve a 40-fold
acceleration during the dataset processing phase.
It is worth noting that compared to training a
ResNet50 as a classifier, preprocessing the dataset
in diffusion process often takes more time, hence
this acceleration is crucial. Furthermore, it is note-
worthy that during the detection inference of a
small number of images, since only one step of
Diffusion Inversion is needed, the Diffusion Back-
bone, such as U-Net, can be directly connected to
our classifier Backbone for integrated deployment,
reducing the time spent on inference. This is why
DNF is considered a fast method for generating
image detection.

5.4 Excellent Performance of DNF

We have demonstrated through extensive experi-
ments the superiority of DNF in the task of gen-
erated image detection compared to other meth-
ods, achieving higher detection accuracy, stronger
robustness, and faster detection speed. Based on
the analysis of these experimental results, we
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Fig. 6 Frequency Domain Visualization. We visualized the DNF of images with similar content and observed that
the frequency domain spectrum of generated images exhibits periodic grid-like and dot-like features, while the frequency
distribution of real images is relatively uniform.

believe the high performance primarily stems from
the following reasons.

The training process of diffusion models inher-
ently focuses on learning image details. Dur-
ing training, diffusion models repeatedly perform
denoising tasks to generate high-quality image
details, acquiring prior knowledge of image details,
denoted as Pm. In designing DNF, we leverage this
prior knowledge Pm by calculating the estimated
noise during the inverse diffusion process. This
effectively utilizes the diffusion model’s under-
standing of image details, which is critical for
detecting generated images.

Let D(·, ·) represent the difference in prior
knowledge of image details between two models.
We observe that, despite variations in model struc-
tures and datasets leading to differences in learned
priors P, when the dataset is sufficiently diverse
and the model’s learning capability is strong, we
generally have:

D(Preal,Pi
gen) > D(Pj

gen,Pi
gen), (9)

where Preal represents the prior knowledge
learned from the training dataset, and Pgen

denotes the priors learned by different generative
models. Our method effectively replaces Pj

gen with
the pre-trained diffusion model’s prior Pm, leading
to:

D(Preal,Pi
gen) > D(Pm,Pi

gen). (10)

In practice, this manifests in the form of
estimated noise. Real images tend to produce
estimated noise with grid-like artifacts, while gen-
erated images, although differing across models,
generally exhibit similar estimated noise that is
distinct from that of real images. This amplifies
the differences between real and generated images,
enabling high-performance detection of generated
images.

6 Future Directions

The current DNF method, while effective, still has
limitations. One notable shortcoming is its poor
generalization across different styles of images. For
example, a model trained on ImageNet struggles
to determine whether electronic art paintings are
generated. This is mainly due to the limitation of
training resources and data. In the future, we will
collaborate with more organizations and acquire
more data and computation resources to scale the
capability of DNF in various scenarios.

Moreover, the utilization of the estimated noise
sequence in the current framework can be further
improved. There is significant potential for fur-
ther exploration into the role and application of
these subsequent diffusion noises in the context
of generated image detection. Understanding and
leveraging these noise sequences in more SOTA
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AIGC frameworks could uncover new avenues to
enhance detection accuracy and robustness.

In addition, with the rise of video generation
frameworks and advancements in real-time Deep-
Fake technologies, there is an urgent need for
scalable detection frameworks capable of address-
ing these rapidly evolving challenges in AIGC
(AI-Generated Content). Future research should
focus on designing adaptable and efficient meth-
ods for generated video detection, ensuring that
detection capabilities keep pace with the rapid
innovations in generative AI.

7 Conclusion

In this paper, we investigate the characteristics
of estimated noise generated during the inverse
diffusion process for images from different data
distributions and, for the first time, utilize esti-
mated noise to design a novel classification feature
for detecting generated images. Classifiers trained
with this feature demonstrate superior detec-
tion performance, stronger generalization, and
enhanced robustness against perturbations com-
pared to baseline methods. We hope this approach
can inspire new ideas for future AIGC detection
methods, mitigating the potential harm caused by
the growing prevalence of misinformation.

8 Data Availability Statement

The data that support the results and analysis
of this study is publicly available in a reposi-
tory. The DiffusionForensics dataset is available
at https://github.com/ZhendongWang6/DIRE.
The CNNSpot dataset is available at https:
//github.com/PeterWang512/CNNDetection.
The GenImage dataset is avaiable at
https://genimage-dataset.github.io/
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